Package 'fabR'

Title: Wrapper Functions Collection Used in Data Pipelines
Description: The goal of this package is to provide wrapper functions in the data cleaning and cleansing processes. These function helps in messages and interaction with the user, keep track of information in pipelines, help in the wrangling, munging, assessment and visualization of data frame-like material.
Authors: Guillaume Fabre [aut, cre], Maelstrom-Research [fnd]
Maintainer: Guillaume Fabre <[email protected]>
License: GPL-3
Version: 2.1.0
Built: 2025-01-17 05:38:45 UTC
Source: https://github.com/guifabre/fabr

Help Index


Add an index column at the first place of a tibble

Description

Add an index, possibly by group, at the first place of a data frame or a tibble The name by default is 'index' but can be named. If 'index' already exists, or the given name, the column can be forced to be created, and replace the other one.

Usage

add_index(tbl, name_index = "index", start = 1, .force = FALSE)

Arguments

tbl

tibble or data frame

name_index

A character string of the name of the column.

start

integer indicating first index number. 1 by default.

.force

TRUE or FALSE, that parameter indicates whether or not the column is created if already exists. FALSE by default.

Value

A tibble or a data frame containing one extra first column 'index' or any given name.

Examples

{

##### Example 1 -------------------------------------------------------------
# add an index for the tibble
add_index(iris, "my_index")

##### Example 2 -------------------------------------------------------------
# add an index for the grouped tibble
library(tidyr)
library(dplyr)

my_tbl <- tibble(iris) %>% group_by(Species) %>% slice(1:3)
add_index(my_tbl, "my_index")

}

Create objects of type "logical".

Description

Create or test for objects of type "logical", and the basic logical constants. This function is a wrapper of the function as.logical() and evaluates if the object to be coerced can be interpreted as a boolean. Any object : NA, NA_integer, NA_Date_, (...), 0, 0L, F, FALSE, false, FaLsE, (...), 1, 1L,T, TRUE, true, TrUe, (...), will be converted as NA, FALSE and TRUE. Any other other will return an error.

Usage

as_any_boolean(x)

Arguments

x

Object to be coerced or tested. Can be a vector.

Value

An logical object of the same size.

See Also

as.logical()

Examples

{

library(dplyr)

as_any_boolean("TRUE")
as_any_boolean(c("1"))
as_any_boolean(0L)
try(as_any_boolean(c('foo')))
as_any_boolean(c(0,1L,0,TRUE,"t","F","FALSE"))
tibble(values = c(0,1L,0,TRUE,"t","F","FALSE")) %>%
  mutate(bool_values = as_any_boolean(values))

}

Create objects of class "Date"

Description

This function takes a character string or a vector. This vector is evaluates one observation after the other, and casts the best matching date format for each of them (independently). The best matching format is tested across seven different formats provided by the lubridate library. The user can specify the wanted matching format (and can be helped using which_any_date() for each value or guess_date_format() for the values as a whole.

Usage

as_any_date(
  x = as.character(),
  format = c("dmy", "dym", "ymd", "ydm", "mdy", "myd", "my", "ym", "as_date")
)

Arguments

x

object to be coerced.

format

A character identifying the format to apply to the object. That format can be 'ymd','ydm','dym','dmy','mdy','myd','my','ym'.

Details

Contrary to lubridate library or as.Date(), the function evaluates the different possibilities for a date. For example, c('02-03-1982') can be either March the 2nd or February the 3rd. The function will cast the value as NA, and a warning, since there is an ambiguity that cannot be solved, unless the user provides the format to apply.

Value

A R Object of class 'Date'.

See Also

lubridate::ymd(),lubridate::ydm(),lubridate::dmy(), lubridate::myd(),lubridate::mdy(),lubridate::dym(), lubridate::my() ,lubridate::ym(), lubridate::as_date(),as.Date(), guess_date_format(),which_any_date()

Examples

{

library(dplyr)
library(tidyr)

##### Example 1 -------------------------------------------------------------
# Ambiguous dates -----------------------------------------------------------
as_any_date('19 02 12')
as_any_date('19 02 12', format = "ymd")
as_any_date('19 02 12', format = "dym")

##### Example 2 -------------------------------------------------------------
# Non-ambiguous dates -------------------------------------------------------
time <-
  tibble(time = c(
  "1983 07-19",
  "14-01-1925",
  "12/13/2015",
  "2009-09-13",
  "17-12-12",
  "coucou",
  "2025 jan the 30th",
  "1809-01-19"))

time %>% mutate(new_time = as_any_date(time))

}

Create objects of type "integer".

Description

Create or test for objects of type "integer". This function is a wrapper of the function as.integer() and evaluates if the object to be coerced can be interpreted as a integer. Any object : NA, NA_integer, NA_Date_, (...), Boolean, such as 0, 0L, F, FALSE, false, FaLsE, (...), Any string "1", "+1", "-1", "1.0000" will be converted as NA or integer. Any other other will return an error.

Usage

as_any_integer(x)

Arguments

x

Object to be coerced or tested. Can be a vector.

Value

An integer object of the same size.

See Also

as.logical()

Examples

{

library(dplyr)

as_any_integer("1")
as_any_integer(c("1.000","2.0","1","+12","-12"))
try(as_any_integer('foo'))

tibble(values = c("1.000","2.0","1","+12","-12")) %>%
  mutate(bool_values = as_any_integer(values))

}

Create objects of type "symbol"

Description

Create or test for objects of type "symbol".

Usage

as_any_symbol(x)

Arguments

x

Object to be coerced or tested. Can be a vector, a character string, a symbol.

Value

Object of type "symbol".

Examples

{

as_any_symbol(coucou)
as_any_symbol("coucou")

}

Open a a web-based bookdown folder in a browser

Description

Opens a previously generated HTML bookdown site from files in the specified folder. This is a shortcut function to access 'index.html' in the specified folder.

Usage

bookdown_open(bookdown_path)

Arguments

bookdown_path

A character string identifying the folder path containing the files to open the bookdown site.

Value

Nothing to be returned. The function opens a web page.

See Also

bookdown_template(),bookdown_open()

Examples

{

bookdown_path = tempdir()
bookdown_template(bookdown_path, overwrite = TRUE)
bookdown_render(bookdown_path, overwrite = TRUE)
bookdown_open(bookdown_path)

}

Render a bookdown into a bookdown site

Description

This helper function renders an existing bookdown folder (containing at least 'index.Rmd file)

Usage

bookdown_render(bookdown_path, overwrite = FALSE)

Arguments

bookdown_path

A character string identifying the folder path where the bookdown report files are.

overwrite

whether to overwrite existing files. FALSE by default.

Value

A folder containing htlm files (in docs, ...) generated from a bookdown report.

See Also

bookdown_template(),bookdown_open()

Examples

{

bookdown_path = tempdir()
bookdown_template(bookdown_path, overwrite = TRUE)
bookdown_render(bookdown_path, overwrite = TRUE)

}

Create a bookdown template.

Description

This helper function creates a template for a bookdown.

Usage

bookdown_template(bookdown_path, overwrite = FALSE)

Arguments

bookdown_path

A character string identifying the folder path where the bookdown will be generated.

overwrite

whether to overwrite existing files. FALSE by default.

Value

A folder containing all files (Rmd, yml, css) to generate the bookdown.

See Also

bookdown_render(),bookdown_open()

Examples

{

bookdown_path = tempdir()
bookdown_template(bookdown_path, overwrite = TRUE)

}

Collects and Generates documentation of a package in a tibble format.

Description

This function crawls and aggregates roxygen documentation into a tibble format. To work properly, elements must be separated with the named fields at title, at description, at ...), each at will be used as column name. The column name will also have 80 character to show the margin limit of each chunk of documentation.

Usage

collect_roxygen(folder_r = "R")

Arguments

folder_r

A character string identifying the folder to index. If not specified, 'R/' is the default.

Value

A tibble where each line represents a function described in a package, and each column is documentation field. Most common fields (title, description, details, param, see also, return and examples are placed ahead).

Examples

{

library(tidyr)
try({tibble(collect_roxygen(tempfile()))}, silent = FALSE)

}

Call to online documentation

Description

Direct call to the online documentation for the package, which includes a description of the latest version of the package, vignettes, user guides, and a reference list of functions and help pages.

Usage

fabR_website()

Value

Nothing to be returned. The function opens a web page.

Examples

{

fabR_website()

}

Create an index of files in a folder

Description

Creates a tibble listing files in a specified folder (recursively) with file path name and other useful metadata. This index can be used to quickly find files in the environment. The index also generates script to read files as R objects into the environment. Names for R objects are generated automatically from file names (R objects are not created at this step but the command line is generated and stored in the column to_eval, ready to be evaluated and generate R objects).

Usage

file_index_create(folder = getwd(), pattern = "^", negate = FALSE)

Arguments

folder

A character string identifying the folder to index. If not specified, the current folder is the default

pattern

A character string defining a pattern to sub-select within folder. Can be useful for excluding certain folders from indexing (matching by regex is supported).

negate

logical. If TRUE, return non-matching elements.

Details

The user must make sure their files are in the folder to be indexed.

Value

A tibble with folder_path, file_path, file_name, extension, file_type columns and a last column to_eval which is R code in a character vector to read the file into the environment.

Examples

## Not run: 

file_index_create(tempdir())


## End(Not run)

Read, source and open objects from an index of files

Description

Reads all files from a file index tibble as R objects to generate in the environment or R scripts to be sourced. Any other file types will be opened in browser (html files) or in environment. If no index tibble is provided, the function creates one from the working directory. (matching by regex is supported).

Usage

file_index_read(
  index,
  file_path = "^",
  file_name = "^",
  extension = "^",
  file_type = "^",
  assign = FALSE,
  .envir = parent.frame()
)

Arguments

index

The index (tibble) of a folder with file locations and metadata, either previously generated by file_index_create() or created from folder.

file_path

A character string specifying a file path to search by. Can be the full string or substring (matching by regex is supported)

file_name

A character string a file name to search by. Can be the full string or substring (matching by regex is supported).

extension

A character string a file extension to search by. Can be the full string or substring (matching by regex is supported).

file_type

A character string a file type to search by. Can be the full string or substring (matching by regex is supported).

assign

If TRUE, the name is automatically assigned from the name of the object read.

.envir

The environment to use. parent.frame() by default

Details

for each file selected, xlsx files will be read using the function read_excel_allsheets(), csv files will be read using the function read_csv_any_formats(), spss and sav files will be read using the function haven::read_spss(), dta files will be read using the function haven::read_dta(), sas7bdat and sas files will be read using the function haven::read_sas(), R scripts, Rmd and md files be read using the function readLines(), The whole files will be created in a list, which name is the name of the file.

Value

R objects generated in the environment or R scripts. R object names are created automatically from their file names. Otherwise return messages indicating what objects were created, or files opened, and if any troubles occurred.

See Also

read_excel_allsheets(), read_csv_any_formats(), haven::read_spss(), haven::read_dta(), haven::read_sas(), readLines()

Examples

## Not run: 

index <- file_index_create(tempdir())
file_index_read(index, file_name = my_file_name)


## End(Not run)

Extract columns that are all 'NA' from a tibble

Description

This helper function extracts the names of the columns in a tibble having NA values for all observations.

Usage

get_all_na_cols(tbl)

Arguments

tbl

R object(dataframe or tibble) of the input tibble

Value

A vector string indicating either that the tibble does not have empty columns or the names of the empty columns.

Examples

{

##### Example 1 -------------------------------------------------------------
# All columns have observation
get_all_na_cols(iris)

##### Example 2 -------------------------------------------------------------
# One column doesn't have any observations
library(dplyr)
get_all_na_cols(mutate(iris, new_col = NA))

}

Extract observations (rows) that have all NA values in a tibble

Description

This helper function extracts the row number(s) having NA value for all columns.

Usage

get_all_na_rows(tbl, id_col = NULL)

Arguments

tbl

R object(dataframe or tibble) of the input tibble

id_col

A character string specifying the column to ignore in identification of repeated observations. If NULL (by default), all of the columns will be taken in account for repeated observation identification. The row number will be used to identify those observations.

Value

A vector string indicating either that the tibble does not have empty observation or the row number of the empty observations.

Examples

{

##### Example 1 -------------------------------------------------------------
# All rows have observation
get_all_na_rows(iris)

##### Example 2 -------------------------------------------------------------
# One row doesn't have any observations
library(dplyr)
get_all_na_rows(bind_rows(iris, tibble(Species = c(NA,NA))))
get_all_na_rows(
  tbl = bind_rows(iris, tibble(Species =  c('id_151', 'id_152'))),
  id_col = 'Species')

}

Extract columns that have same values in a tibble

Description

This helper function extracts the names of the columns in a tibble having identical values for all observations.

Usage

get_duplicated_cols(tbl)

Arguments

tbl

R object(dataframe or tibble) of the input tibble

Value

A tibble indicating which columns which values is the same in the tibble

Examples

{

library(dplyr)
tbl <-
  mtcars %>%
  mutate(
   cyl_2 = cyl,
   cyl_3 = cyl,
   mpg_2 = mpg)

 get_duplicated_cols(tbl)

}

Extract observations (rows) that have same values in a tibble

Description

This helper function extracts the row number (or first column value) in a tibble having identical values for all columns. This function can be used either on the whole columns or excluding the first column (id) (which can be useful to identify repeated observation across different ids)

Usage

get_duplicated_rows(tbl, id_col = NULL)

Arguments

tbl

R object(dataframe or tibble) of the input tibble

id_col

A character string specifying the column to ignore in identification of repeated observations. If NULL (by default), all of the columns will be taken in account for repeated observation identification. The row number will be used to identify those observations.

Value

A tibble indicating which row which values is the same in the tibble

Examples

{

# the row numbers are returned to identify which observations have repeated
# values
library(dplyr)
get_duplicated_rows(tbl = bind_rows( tbl = mtcars, mtcars[1,]))

get_duplicated_rows(
  tbl = bind_rows(mtcars,mtcars[1,]) %>%
        add_index() %>%
        mutate(index = paste0('obs_',index)),
  id_col = 'index')

}

Get the paths of branches in a list

Description

Function that recursively go through a list object and store in a tibble the path of each element in the list. The paths can be after that edited and accessed using parceval() for example.

Usage

get_path_list(list_obj, .map_list = NULL)

Arguments

list_obj

R list object to be evaluated

.map_list

non usable parameter. This parameter is only there to ensure recursivity. Any modification of this object returns NULL

Value

A tibble containing all the paths of each element of the list and the class of each leaf (can be a list, or R objects).

See Also

parceval()

Examples

{

library(dplyr)
get_path_list(
  list(
    tibble = iris,
    list = list(t1 = mtcars, t2 = tibble(iris)),
    char = "foo"))

}

Extract columns that have unique values in a tibble

Description

This helper function extracts the names of the columns in a tibble having unique value for all observations.

Usage

get_unique_value_cols(tbl)

Arguments

tbl

R object(dataframe or tibble) of the input tibble

Value

A vector string indicating either that the tibble does not have empty columns or the names of the empty columns.

Examples

{

##### Example 1 -------------------------------------------------------------
# All columns have distinct observation
get_unique_value_cols(iris)

##### Example 2 -------------------------------------------------------------
# One column doesn't have distinct observations
get_unique_value_cols(tbl = iris[1:50,])

}

Evaluate and gives the best match to any date format using lubridate library

Description

This function takes a tibble and a specific column. This column is evaluated one observation after the other, and finally gives the best matching date format for the whole column. The best matching format is tested across seven different formats provided by the lubridate library. Along with the format, the percentage of matching is given in the output tibble. The information of the best matching format can be used to mutate a column using as_any_date(). The default format is yyyy-mm-dd.

Usage

guess_date_format(tbl, col = NULL)

Arguments

tbl

R object(dataframe or tibble) of the input tbl

col

A character string specifying a column of interest

Details

Contrary to lubridate library or as.Date(), the function evaluates the column as a whole, and does not cast the column if there is ambiguity between values. For example, ('19-07-1983', '02-03-1982') implies that 02 refers to the day and 03 refers to the month, since that order works for the first element, and doesn't otherwise.

Value

A tibble with information concerning the best matching date format, given an object to be evaluated.

See Also

lubridate::ymd(),lubridate::ydm(),lubridate::dmy(), lubridate::myd(),lubridate::mdy(),lubridate::dym(), lubridate::my() ,lubridate::ym(), lubridate::as_date(),as.Date(), which_any_date(),as_any_date()

Examples

{

library(tidyr)

##### Example 1 -------------------------------------------------------------
# Non-ambiguous dates ----------------------------------------------------
time <-
  tibble(time = c(
  "1983-07-19",
  "2003-01-14",
  "2010-09-29",
  "2023-12-12",
  "2009-09-03",
  "1509-11-30",
  "1809-01-01"))
guess_date_format(time)

##### Example 2 -------------------------------------------------------------
# Ambiguous dates ----------------------------------------------------
time <-
 tibble(time = c(
 "1983-19-07",
 "1983-10-13",
 "2009-09-03",
 "1509-11-30"))
guess_date_format(time)


##### Example 3 -------------------------------------------------------------
# Non date format dates --------------------------------------------------
time <-
  tibble(time = c(
  "198-07-19",
  "200-01-14",
  "201-09-29",
  "202-12-12",
  "2000-09-03",
  "150-11-3d0",
  "180-01-01"))
guess_date_format(time)

}

Shortcut to create beautiful names in a list

Description

Generate a name for an element in a list. This function is targeted for functions creations which handle lists. Those lists may need names to go through each elements. This function can works with stats::setNames() and allows the user to provide name shorter, more user-friendly in their lists.

Usage

make_name_list(args_list, list_elem)

Arguments

args_list

A list of character string of same length of list_elem

list_elem

A list of character string of same length of args_list

Value

A character string simplified to be used as names in a list.

See Also

stats::setNames()

Examples

{

library(tidyr)
library(stats)

#### Example 1 --------------------------------------------------------------
# make_name_list generates names that are informative through a line of code
# or function. tibble(iris), iris %>% tibble and
# list(iris = tibble(mytibble) %>% select(Species)) will have 'iris' as name.

list(tibble(iris), tibble(mtcars)) %>%
  setNames(make_name_list(list(tibble(iris), tibble(mtcars)), args_list =
    c("IRIS %>% complicated_code","complicated_function(MTCARS)")))

#### Example 2 --------------------------------------------------------------
# make_name_list can be used when a function uses arguments provided by the
# user to generate a list. The name is simplified and given to the list
# itself

library(dplyr)
my_function <- function(df){

  .fargs <- as.list(match.call(expand.dots = TRUE))
  list_df <-
    list(df) %>%
    setNames(.,make_name_list(as.character(.fargs['df']),list(df)))
  return(list_df)}

my_function(tibble(iris))
my_function(iris %>% tibble %>% select(Species))

}

Shortcut to display a message and acceptation on prompt

Description

Shortcut allowing to provide user a prompt and a message that is to be read and validated before pursuing process. This function is targeted for function creators where user interaction is required.

Usage

message_on_prompt(...)

Arguments

...

String character to put in a message

Value

Nothing to be returned. The function sends a message as a prompt in the console.

Examples

{

message_on_prompt("Do you want to continue? Press `enter` or `esc`")

}

Shortcut to turn String character into R code

Description

Shortcut to parse() and eval() evaluate R expression in a character string, and turns it into actual R code. This function is targeted for interaction with external files (where expression is stored in text format) ; for tidy elements where code expression is generated using dplyr::mutate(), combined with paste0() ; in for while, map, etc. loops where character string expression can be indexed or iteratively generated and evaluated ; objects to be created (using assign, <- or <<- obj) where the name of the R object is stored in a string. Some issues may occur when parceval is used in a different environment, such as in a function. Prefer eval(parse(text = ...) instead.

Usage

parceval(...)

Arguments

...

String character to be parsed and evaluated

Value

Any output generated by the evaluation of the string character.

See Also

parse(), eval()

Examples

{

##### Example 1 -------------------------------------------------------------
# Simple assignation will assign 'b' in parceval environment (which is
# associated to a function and different from .GlobalEnv, by definition).
# Double assignation will put 'b' in .GlobalEnv.
# (similar to assign(x = "b",value = 1,envir = .GlobalEnv))

a <- 1
parceval("print(a)")

##### Example 2 -------------------------------------------------------------
# use rowwise to directly use parceval in a tibble, or use a for loop.
library(dplyr)
library(tidyr)

tibble(cars) %>%
  mutate(
    to_eval = paste0(speed,"/",dist)) %>%
  rowwise() %>%
  mutate(
    eval = parceval(to_eval))

##### Example 3 -------------------------------------------------------------
# parceval can be parcevaled itself!

code_R <-
  'as_tibble(cars) %>%
  mutate(
    to_eval = paste0(speed,"/",dist)) %>%
  rowwise() %>%
  mutate(
    eval = parceval(to_eval))'

cat(code_R)
parceval(code_R)

}

Read a csv file using read_csv and avoid errors

Description

[Experimental] The csv file is read twice to detect the number of lines to use in attributing the column type ('guess_max' parameter of read_csv). This avoids common errors when reading csv files.

Usage

read_csv_any_formats(filename)

Arguments

filename

A character string of the path of the csv file.

Value

A tibble corresponding to the csv read.

See Also

readr::read_csv(), readr::read_csv2()

Examples

{

try(read_csv_any_formats(filename = tempfile()),silent = TRUE)

}

Read all Excel sheets using readxl::read_excel() recursively

Description

The Excel file is read and the values are placed in a list of tibbles, with each sheet in a separate element in the list. If the Excel file has only one sheet, the output is a single tibble.

The Excel file is read and the values are placed in a list of tibbles, with each sheet in a separate element in the list. If the Excel file has only one sheet, the output is a single tibble.

Usage

read_excel_allsheets(filename, sheets = "", keep_as_list = FALSE)

read_excel_allsheets(filename, sheets = "", keep_as_list = FALSE)

Arguments

filename

A character string of the path of the Excel file.

sheets

A vector containing only the sheets to be read.

keep_as_list

A Boolean to say whether the object should be a list or a tibble, when there is only one sheet provided. FALSE by default.

Value

A list of tibbles corresponding to the sheets read, or a single tibble if the number of sheets is one.

A list of tibbles corresponding to the sheets read, or a single tibble if the number of sheets is one.

See Also

readxl::read_excel()

readxl::read_excel()

Examples

{

try(read_excel_allsheets(filename = tempfile()), silent = TRUE)

}

{

try(read_excel_allsheets(filename = tempfile()), silent = TRUE)

}

Shortcut to silently run a code chunk avoiding error, messages and warnings

Description

Shortcut avoiding user to get messages, warnings and being stopped by an error. The usage is very similar to suppressWarnings(). This function is targeted for function creators where user experience enhancement is sought.

Usage

silently_run(...)

Arguments

...

R code

Value

The output of the R code, unless the output is a message, a warning or an error, nothing will be returned in that case.

See Also

invisible(), suppressWarnings(), suppressMessages()

Examples

{

as.integer("text")
silently_run(as.integer("text"))

}

Evaluates and gives the possible format(s) for an object to be evaluated

Description

This function takes a character string or a vector. This vector is evaluates one observation after the other, and gives the best matching date format for each of them (independently). The best matching format is tested across seven different formats provided by the lubridate library. The information of the best matching format can be used to mutate a column using as_any_date().

Usage

which_any_date(
  x,
  format = c("ymd", "ydm", "dmy", "myd", "mdy", "dym", "my", "ym", "as_date")
)

Arguments

x

object to be coerced. Can be a character string or a vector.

format

A character identifying the format to apply to the object to test. That format can be 'ymd','ydm','dmy','myd','mdy','dym', 'ym', 'my' or 'as_date' in that specific order ('ymd" will be chose as a default format, then 'ymd', etc.).

Details

Contrary to lubridate library or as.Date(), the function evaluates the different possibilities for a date. For example, c('02-03-1982') can be either March the 2nd or February the 3rd. The function will provide "mdy, dmy" as possible formats. If no format is found, the function returns NA.

Value

A character string of the possible date formats given a parameter to be tested. The length of the vector is the length of the input object.

See Also

lubridate::ymd(),lubridate::ydm(),lubridate::dmy(), lubridate::myd(),lubridate::mdy(),lubridate::dym(), lubridate::my() ,lubridate::ym(), lubridate::as_date(),as.Date(), guess_date_format(),as_any_date()

Examples

{

time <- c(
  "1983-07-19",
  "31 jan 2017",
  "1988/12/17",
  "31-02-05",
  "02-02-02",
  "2017 october the 2nd",
  "02-07-2012",
  "19-07-83",
  "19-19-19")

which_any_date(time)

}

Write all Excel sheets using writexl::write_xlsx() recursively

Description

The R objects are read and the values are placed in separated sheets. This function is inspired by the function proposed in https://statmethods.wordpress.com/2014/06/19/quickly-export-multiple-r-objects-to-an-excel-workbook/

The R objects are read and the values are placed in separated sheets. This function is inspired by the function proposed in https://statmethods.wordpress.com/2014/06/19/quickly-export-multiple-r-objects-to-an-excel-workbook/

Usage

write_excel_allsheets(list, filename)

write_excel_allsheets(list, filename)

Arguments

list

R objects, coma separated.

filename

A character string of the path of the Excel file.

Value

Nothing to be returned. The file is created at the path declared in the environment.

Nothing to be returned. The file is created at the path declared in the environment.

See Also

writexl::write_xlsx()

writexl::write_xlsx()

Examples

{

unlink(
  write_excel_allsheets(
    list = list(iris = iris, mtcars = mtcars),
    filename = tempfile()))

}

{

unlink(
  write_excel_allsheets(
    list = list(iris = iris, mtcars = mtcars),
    filename = tempfile()))

}